Knowledge-based recommenders

Nisheeth

Knowledge-based recommendation

Knowledge-based recommendation

- Explicit domain knowledge
 - Sales knowledge elicitation from domain experts
 - System mimics the behavior of experienced sales assistant
 - Best-practice sales interactions
 - Can guarantee "correct" recommendations (determinism) with respect to expert knowledge
- Conversational interaction strategy
 - Opposed to one-shot interaction
 - Elicitation of user requirements
 - Transfer of product knowledge ("educating users")

Types

- Different views on "knowledge"
 - Logic-based knowledge descriptions (from domain expert)
 - E.g. Hard and soft constraints
 - Utility-based RS
 - E.g. MAUT Multi-attribute utility theory

Logic-based knowledge base

- Design an RS knowledge base
 - Customer properties (V_c)
 - Product properties (V_{PROD})
 - Fundamental domain constraints (C_R)
 - Optional (filter) constraints (C_F)
 - Input requirements (C_c)
- Useful to represent using first order logic
 - Represent products as conjunctions of features
- Can treat RS as a constraint satisfaction problem

 $CSP(V_c, V_{PROD}, C_R \cup C_F \cup C_{PROD} \cup C_C)$

• Goal: Output some logically <u>consistent</u> V_{PROD} from $C_R \cup C_F \cup C_{PROD} \cup C_C$

Logical consistency check

- A set of statements is logically consistent if they can all be simultaneously true
- Shall we work through some examples?
- I am a man. I have short hair. You have long hair. You are a woman.
- Everyone should be tolerant because there is no way to judge another person's beliefs.
- It is raining. It is not raining.
- Light is simultaneously both a wave and a particle.
- God can do anything.
- This sentence is false.

Typical solution approaches

- Backtracking
 - Recursive depth first search
- Constraint propagation (e.g. AC-3)
 - Store arcs that represent constraints between variable pairs
 - Eliminate one variables possible values based on constraints
 - Iterate
- Local search (e.g. min-conflicts)
 - Assign values to all variables
 - Pick a violating variable
 - Assign a value that minimizes conflicts for it
 - Iterate
- Historically computationally complex, but recent work shows promise of scalability

Not well suited for

- Situations with subjective preferences
- Because of conjunction fallacies
- Sharmishtha is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in antiwar demonstrations.
- Assign probabilities to the following sentences being true
 - She is an investment banker.
 - She is active in the feminist movement.
 - She is an investment banker and is active in the feminist movement.

Sample constraint-based problem

$V_C = \{kl_c: [expert, average, beginner] \dots \dots \dots$	/* level of expertise */
wr_c : [low, medium, high]	* willingness to take risks */
<i>id_c</i> : [shortterm, mediumterm, longterm]	/* duration of investment */
<i>aw_c</i> : [yes, no]	/* advisory wanted ? */
<i>ds_c</i> : [savings, bonds, stockfunds, singleshares]	/* direct product search */
<i>sl_c</i> : [savings, bonds] /* ty	pe of low-risk investment */
<i>av_c</i> : [yes, no]	. /* availability of funds */
<i>sh_c</i> : [stockfunds, singlshares] /* type	of high-risk investment */ }

$V_{PROD} = \{name_p: [text] \dots /* name of the product */$	
er_p : [140]	
<i>ri_p</i> : [low, medium, high]	
<i>mniv_p</i> : [114]	
<i>inst</i> _p : [text]	

$$C_{R} = \{CR_{1}: wr_{c} = high \rightarrow id_{c} \neq shortterm, \\ CR_{2}: kl_{c} = beginner \rightarrow wr_{c} \neq high\}$$

$$C_{F} = \{CF_{1}: id_{c} = shortterm \rightarrow mniv_{p} < 3, \\ CF_{2}: id_{c} = mediumterm \rightarrow mniv_{p} \ge 3 \land mniv_{p} < 6, \\ CF_{3}: id_{c} = longterm \rightarrow mniv_{p} \ge 6, \\ CF_{4}: wr_{c} = low \rightarrow ri_{p} = low, \\ CF_{5}: wr_{c} = medium \rightarrow ri_{p} = low \lor ri_{p} = medium, \\ CF_{6}: wr_{c} = high \rightarrow ri_{p} = low \lor ri_{p} = medium \lor ri_{p} = high, \\ CF_{7}: kl_{c} = beginner \rightarrow ri_{p} \ne high, \\ CF_{8}: sl_{c} = savings \rightarrow name_{p} = savings, \\ CF_{9}: sl_{c} = bonds \rightarrow name_{p} = bonds \}$$

Logical product description

 $C_{PROD} = \{CPROD_1: name_p = savings \land er_p = 3 \land ri_p = low \land mniv_p = 1 \land inst_p = A; CPROD_2: name_p = bonds \land er_p = 5 \land ri_p = medium \land mniv_p = 5 \land inst_p = B; CPROD_3: name_p = equity \land er_p = 9 \land ri_p = high \land mniv_p = 10 \land inst_p = B\}$

$$C_{C} = \{wr_{c} = low, kl_{c} = beginner, id_{c} = shortterm, sl_{c} = savings\}$$

What will the RS output be?

Query relaxation

- What if no exact match is found?
- Approach: find maximal subset of query that removes conflict
- Naïve solution has exponential complexity
- Can you design a better solution?

ID	Product p1	Product p2	Product p3	Product p4
CF_1	0	1	0	1
CF_2	1	0	1	0
CF_3	0	1	1	0
CF_4	1	1	0	1

Iterate over products to find # relaxations needed to satisfy

Can also involve customer

- Computation of minimal revisions of requirements
 - Do you want to relax your brand preference?
 - Accept Panasonic instead of Canon brand
 - Or is photographing landscapes with a wide-angle lens and maximum cost less important?
 - Lower focal length > 28mm and Price > 350 EUR
 - Optionally guided by some predefined weights or past community behavior
- Be aware of possible biases (e.g. age, family status, ...)

Use case

TurboTax. 🗸 Federal I	Free Edition My Turbo Tax Sign Out Ask a question Q				
\$967 FEDERAL REFUND	Federal Taxes				
\$501 NC REFUND	Tell us why Emily received this 1099-MISC You entered \$9,283.32 in Box 3 - Other Income. We'll need some more information to make sure this is reported correctly.				
HOME	How would you describe the reason Emily got this Form 1099-MISC?				
PERSONAL INFO	○ Emily was self-employed (sole proprietor) Explain This.				
FEDERAL TAXES	Emily was a freelancer or independent contractor <u>Explain This</u> .				
Deductions & Credits Other Tax Situations	 Emily received this money for something not related to Emily's regular line of work. Explain This 				
Federal Review Error Check	Emily got this 1099-MISC for another reason. <u>See Examples</u>				
STATE TAXES	Back				
REVIEW					
FILE	License Agreement Privacy Security Support © 2014 Intuit Inc. All rights reserved.				

Best suited for

	Low	Medium	High
Upfront cost			Х
Error cost			Х
Heterogeneity	Х		
Frequency	Х		
Scale			Х

Utility-based knowledge bases

- Multi-Attribute Utility Theory (MAUT)
 - Each item is evaluated according to a predefined set of dimensions that provide an aggregated view on the basic item properties
- E.g. <u>quality</u> and <u>economy</u> are dimensions in the domain of digital cameras

id	value	quality	economy
price	≤250	5	10
	>250	10	5
mpix	≤8	4	10
	>8	10	6
opt-zoom	≤9	6	9
	>9	10	6

Customer-item utilities with MAUT

• Customer interests:

00101		
customer	quality	economy
Cu ₁	80%	20%
Cu ₂	40%	60%

*

*

• Item utilities:

quality	economy	utility: cu ₁	utility: cu ₂	ך
P1 Σ(5,4,6,6,3,7,10) = 41	Σ (10,10,9,10,10,10,6) = 65	45.8 [8]	55.4 [6]	
P2 Σ(5,4,6,6,10,10,8) = 49	Σ (10,10,9,10,7,8,10) = 64	52.0 [7]	58.0 [1]	 *
P3 Σ(5,4,10,6,10,10,8) = 53	Σ (10,10,6,10,7,8,10) = 61	54.6 [5]	57.8 [2]	

$$utility(p) = \sum_{\substack{j=1 \\ *}}^{\#(dimensions)} interest(j) * contribution(p, j)$$

Output items ranked by utility

Constraint-based recommendation III

- More variants of recommendation task
 - Customers maybe not know what they are seeking
 - Find "diverse" sets of items
 - Notion of similarity/dissimilarity
 - Idea that users navigate a product space
 - If recommendations are more diverse than users can navigate via critiques on recommended "entry points" more efficiently (less steps of interaction)
 - Bundling of recommendations
 - Find item bundles that match together according to some knowledge
 - E.g. travel packages, skin care treatments or financial portfolios
 - RS for different item categories, CSP restricts configuring of bundles

Conversational strategies

- Process consisting of multiple conversational moves
 - Resembles natural sales interactions
 - Not all user requirements known beforehand
 - Customers are rarely satisfied with the initial recommendations
- Different styles of preference elicitation:
 - Free text query interface
 - Asking technical/generic properties
 - Images / inspiration
 - Proposing and Critiquing

Example: adaptive strategy selection

State model, different actions possible

Propose item, ask user, relax/tighten result set,...

Limitations of knowledge-based recommendation methods

- Cost of knowledge acquisition
 - From domain experts
 - From users
 - Remedy: exploit web resources
- Accuracy of preference models
 - Very fine granular preference models require many interaction cycles with the user or sufficient detailed data about the user
 - Remedy: use collaborative filtering, estimates the preference of a user
 - However: preference models may be instable
 - E.g. asymmetric dominance effects, conjunction effects, sunk cost effects